The string landscape: viewing into it and bypassing around it at the LHC

Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI München
Introduction:

Count the number of consistent string vacua ➤

Vast landscape with \(N_{sol} = 10^{500–1500} \) vacua!

(Kawai, Lewellen, Tye (1986); Lerche, Lüst, Schellekens (1986);
Antoniadis, Bachas, Kounnas (1986); Douglas (2003))
Two (complementary) issues:

Count the number of consistent string vacua ➤

Vast landscape with \(N_{sol} = 10^{500-1500} \) vacua!

(Kawai, Lewellen, Tye (1986); Lerche, Lüst, Schellekens (1986);
Antoniadis, Bachas, Kounnas (1986); Douglas (2003))

Two (complementary) issues:
Count the number of consistent string vacua ➤

Vast landscape with \(N_{sol} = 10^{500-1500} \) vacua!

(Kawai, Lewellen, Tye (1986); Lerche, Lüst, Schellekens (1986);
Antoniadis, Bachas, Kounnas (1986); Douglas (2003))

Introduction:

- Can we view into the landscape?

⇒ information about other vacua?
Two (complementary) issues:

- Can we view into the landscape?
 ⇒ information about other vacua?
- Can we by-pass the landscape?
 ⇒ look for green (promising) spots
 - model independent predictions?

Introduction:

Count the number of consistent string vacua ➤

Vast landscape with \(N_{\text{sol}} = 10^{500-1500} \) vacua!

(Kawai, Lewellen, Tye (1986); Lerche, Lüst, Schellekens (1986);
Antoniadis, Bachas, Kounnas (1986); Douglas (2003))
Outline

- Viewing into the landscape
- By-passing the landscape:
 Stringy signatures at LHC

 (The LHC string hunter’s companion)
Outline

- Viewing into the landscape
- By-passing the landscape: Stringy signatures at LHC

(The LHC string hunter’s companion)

Low TeV string scale compactifications:

- Alternative to low energy supersymmetry
- Realization large extra dimension scenario (ADD)
- String perturbation theory valid at 1-10 TeV

Outline

- Viewing into the landscape
- By-passing the landscape: Stringy signatures at LHC

(The LHC string hunter’s companion)

Low TeV string scale compactifications:

- Alternative to low energy supersymmetry
- Realization large extra dimension scenario (ADD)
- String perturbation theory valid at 1-10 TeV
II) Viewing into the landscape:

In general: constraints on the landscape of effective theories by consistent embedding in quantum gravity (swampland approach) (Vafa et al.)
II) Viewing into the landscape:

In general: constraints on the landscape of effective theories by consistent embedding in quantum gravity (swampland approach) (Vafa et al.)

Need non-perturbative effects as telescopes:
II) Viewing into the landscape:

In general: constraints on the landscape of effective theories by consistent embedding in quantum gravity (swampland approach) (Vafa et al.)

Need non-perturbative effects as telescopes:

a) Bounds on the landscape from decays of black holes:

⇒ information on particle masses and vacuum expectation values in some vacua
II) Viewing into the landscape:

In general: constraints on the landscape of effective theories by consistent embedding in quantum gravity (swampland approach) (Vafa et al.)

Need non-perturbative effects as telescopes:

a) Bounds on the landscape from decays of black holes:

⇒ information on particle masses and vacuum expectation values in some vacua

b) Transitions between vacua due to domain walls:

⇒ information on life times of particle of some vacua
II) Viewing into the landscape:

In general: constraints on the landscape of effective theories by consistent embedding in quantum gravity (swampland approach) (Vafa et al.)

Need non-perturbative effects as telescopes:

a) Bounds on the landscape from decays of black holes:
 \[\Rightarrow\] information on particle masses and vacuum expectation values in some vacua

b) Transitions between vacua due to domain walls:
 \[\Rightarrow\] information on life times of particle of some vacua

c) Constraints from mathematical consistency:
 generalized geometry
Consider a theory with N species of particles with mass M:

$$N < N_{\text{max}} = \frac{M_{\text{Planck}}^2}{M^2}$$

M: scale of new physics

(A quantum black hole can emit at most N_{max} different particles)

This bound must be satisfied in every effective string vacuum that is consistently coupled to gravity!

E.g. if a scalar field in the effective potential gives mass to N particles via the Higgs effect: $M = M(\phi)$

$$M(\phi)^2 < \frac{M_{\text{Planck}}^2}{N}$$

Bound forbids essentially large trans-planckian vevs:
E.g: \[N = 10^{32} \implies M < 10^{-16} M_{Planck} \approx 1 \text{ TeV} \]

This bound gives also a possible explanation of the hierarchy problem:

\[M \text{ can be seen as the fundamental scale of gravity, which is diluted by the presence on the } N \text{ particle species.} \]
E.g: \(N = 10^{32} \implies M < 10^{-16} M_{Planck} \approx 1 \text{ TeV} \)

This bound gives also a possible explanation of the hierarchy problem:

\(M \) can be seen as the fundamental scale of gravity, which is diluted by the presence on the \(N \) particle species.

\(\implies \) dramatic effects at the LHC.
E.g: \[N = 10^{32} \implies M < 10^{-16} M_{Planck} \approx 1 \, TeV \]

This bound gives also a possible explanation of the hierarchy problem:

\(M \) can be seen as the fundamental scale of gravity, which is diluted by the presence on the \(N \) particle species.

⇒ dramatic effects at the LHC.

Is there a stringy realization of the large \(N \) species scenario?
b) Transitions between different vacua:

These transitions are due to domain wall solutions that interpolate between different vacua.

E.g. from M4 to AdS4:
b) Transitions between different vacua:

These transitions are due to domain wall solutions that interpolate between different vacua.

E.g. from M4 to AdS4:

non-zero fluxes
b) Transitions between different vacua:

These transitions are due to domain wall solutions that interpolate between different vacua.

E.g. from M4 to AdS4:

non-zero fluxes

zero fluxes

C) **Generalized geometry:** new supersymmetric, warped type II AdS_4 vacua:

Consider backgrounds of the form:

$$AdS_4 \times_w M_6$$

plus Ramond & NS fluxes

Type II: two globally defined internal spinors θ_1, θ_2

Non-vanishing warp factor: θ_1, θ_2 must be non-vanishing

$\Rightarrow M_6$ possesses a SU(3) x SU(3) group structure

Generalized CY condition: $d\Psi_\pm = 0$ ($\Psi_\pm \simeq \theta_1^+(\theta_2^\pm)^\dagger$)

Unwarped IIA: **Strict SU(3) structure:** θ_1, θ_2 parallel

(Berndt, Cvetic (2000/04); Lüst, Tsimpis (2004); Tomasiello (2007); Koerber, Lüst, Tsimpis (2008); Aldazabel, Font (2008)).

$M_6 :$ coset space $G/H.$

Unwarped IIB: **Static SU(2) structure:** θ_1, θ_2 orthogonal
New classes of sourceless warped AdS4 solutions:

\[ds^2 = e^{2A} ds^2 (AdS_4) + ds^2 (M_6) \]

\(M_6 \) is a co-dimension one foliation:

\[ds^2 (M_6) = d\chi^2 + ds^2_\chi (M_5) \]

\(M_5 \) admits an Sasaki-Einstein structure.

All SUSY and Bianchi identities are automatically satisfied (generalization of CY conditions)
Interpolating domain wall solutions:

Metric and fluxes depend on an additional coordinate r:

\[
\begin{align*}
\text{ds}^2 &= e^{2\hat{A}(r)} \ dx^\mu d_\mu + \text{ds}^2 (\mathcal{M}_7) \\
&= e^{Z(r)} (e^{2A(r)} \ dx^\mu d_\mu + dr^2) + \text{ds}^2 (\mathcal{M}_6)
\end{align*}
\]

\Rightarrow Generalized $G_2 \times G_2$ group structure on \mathcal{M}_7

Supersymmetry conditions (flow equations):

\[
d\Psi_\pm = f(r)
\]

- These can be also obtained from an eff. 4D action!
- c-theorem, also relevant for flow between CFT3's!
Outline

• Viewing into the landscape

• By-passing the landscape: Stringy signatures at LHC

(The LHC string hunter’s companion)

(D. Lüst, S. Stieberger, T. Taylor, arXiv:0807.3333;
D. Härtl, D. Lüst, O. Schlotterer, S. Stieberger, T. Taylor, to appear)
II) By-passing the landscape by making model independent predictions:
Consider (only) those vacua that realize the Standard Model

Several approaches for string phenomenology:
II) By-passing the landscape by making model independent predictions:

Consider (only) those vacua that realize the Standard Model

Several approaches for string phenomenology:

• Holography (AdS/CFT) and QCD
II) By-passing the landscape by making model independent predictions:

Consider (only) those vacua that realize the Standard Model

Several approaches for string phenomenology:

- Holography (AdS/CFT) and QCD
- GUT models: Go to the field theory limit - decouple gravity!

\[\frac{M_{\text{Planck}}}{M_{\text{FT}}} \rightarrow \infty \]
II) By-passing the landscape by making model independent predictions:

Consider (only) those vacua that realize the Standard Model

Several approaches for string phenomenology:

- Holography (AdS/CFT) and QCD
- GUT models: Go to the field theory limit - decouple gravity! \(\frac{M_{\text{Planck}}}{M_{\text{FT}}} \to \infty \)

Are there model independent predictions beyond the SM?
II) By-passing the landscape by making model independent predictions:

Consider (only) those vacua that realize the Standard Model

Several approaches for string phenomenology:

- Holography (AdS/CFT) and QCD
- GUT models: Go to the field theory limit - decouple gravity! \[\frac{M_{\text{Planck}}}{M_{\text{FT}}} \rightarrow \infty \]

Are there model independent predictions beyond the SM? But this is not a real test of string theory in itself!
Several approaches for string phenomenology:

- Holography (AdS/CFT) and QCD
- GUT models: Go to the field theory limit - decouple gravity!
 \[\frac{M_{\text{Planck}}}{M_{\text{FT}}} \to \infty \]

Are there model independent predictions beyond the SM?
But this is not a real test of string theory in itself!

- Can we test stringyness of physics?
 Measure excited string states in experiment?
Several approaches for string phenomenology:

- Holography (AdS/CFT) and QCD
- GUT models: Go to the field theory limit - decouple gravity! $M_{\text{Planck}}/M_{\text{FT}} \rightarrow \infty$

Are there model independent predictions beyond the SM?

But this is not a real test of string theory in itself!

- Can we test stringyness of physics?
- Measure excited string states in experiment?
We consider type IIA/B orientifolds with intersecting D6/D7-branes:

Realization of the SM without chiral exotics! (Gmeiner, Honecker)

Open string Standard Model Quiver, wrapped around internal p-cycles:

(Baryon number is (anomalous) U(1) gauge symmetry!)
We consider type IIA/B orientifolds with intersecting D6/D7-branes:

(Review: Blumenhagen, Körs, Lüst, Stieberger, hep-th/0610327)

Realization of the SM without chiral exotics! (Gmeiner, Honecker)

Open string Standard Model Quiver, wrapped around internal p-cycles:

(Baryon number is (anomalous) U(1) gauge symmetry!)

We want to compute all n-point, g-loop string amplitudes of SM model open string fields.
We consider type IIA/B orientifolds with intersecting D6/D7-branes:

(Review: Blumenhagen, Körs, Lüst, Stieberger, hep-th/0610327)

Realization of the SM without chiral exotics! (Gmeiner, Honecker)

Open string Standard Model Quiver, wrapped around internal p-cycles:

(Baryon number is (anomalous) U(1) gauge symmetry!)

We want to compute all n-point, g-loop string amplitudes of SM model open string fields.

So far: \(n=4,5; \ g=0\)
There are 3 basic mass scales in D-brane compactifications:
There are 3 basic mass scales in D-brane compactifications:

String scale: \[(1) : \quad M_s = \frac{1}{\sqrt{\alpha'}}\]
There are 3 basic mass scales in D-brane compactifications:

String scale: \(M_s = \frac{1}{\sqrt{\alpha'}} \) (1)

Compactification scale: \(M_6 = \frac{1}{V_6^{1/6}} \) (2)
There are 3 basic mass scales in D-brane compactifications:

String scale:
\[(1) : \quad M_s = \frac{1}{\sqrt{\alpha'}}\]

Compactification scale:
\[(2) : \quad M_6 = \frac{1}{V_6^{1/6}}\]

Scale of wrapped D(p+3)-branes:
\[(3) : \quad M_p^\parallel = \frac{1}{(V_p^\parallel)^{1/p}}\]
There are 3 basic mass scales in D-brane compactifications:

String scale: \(M_s = \frac{1}{\sqrt{\alpha'}} \)

Compactification scale: \(M_6 = \frac{1}{V_6^{1/6}} \)

Scale of wrapped D(p+3)-branes: \(M_p = \frac{1}{(V_p^\parallel)^{1/p}} \)

Strength of 4D gravitational interactions:

\[(A) : \quad M_{\text{Planck}}^2 \sim M_s^8 V_6 \sim 10^{19} \text{ GeV} \]

Strength of 4D gauge interactions:

\[(B) : \quad g_{Dp}^{-2} \sim M_s^p V_p^\parallel \sim \mathcal{O}(1) \]

\[\implies (V_p^\parallel)^{-1/p} \sim M_s \]
There are 3 basic mass scales in D-brane compactifications:

String scale: \[M_s = \frac{1}{\sqrt{\alpha'}} \tag{1} \]

Compactification scale: \[M_6 = \frac{1}{V_6^{1/6}} \tag{2} \]

Scale of wrapped D(p+3)-branes: \[M_p^\parallel = \frac{1}{(V_p^\parallel)^{1/p}} \tag{3} \]

\(M_s \) is a free parameter!
Low string scale scenario:
(Antoniadis, Arkani-Hamed, Dimopoulos, Dvali)

\[M_s \equiv M_{SM} \simeq 10^3 \text{ GeV} \]

Stringy realization by Swiss cheese Calabi-Yau‘s:

(Abdussalam, Allanach, Balasubramanian, Berglund, Cicoli, Conlon, Kom, Quevedo, Suruliz; Blumenhagen, Moster, Plauschinn; for model building and phenomenological aspects see: Conlon, Maharana, Quevedo, arXiv:0810.5660)
Low string scale scenario:

\[M_s \] is the Standard Model (TeV) scale:

\[M_s \equiv M_{SM} \simeq 10^3 \text{ GeV} \]

Stringy realization by Swiss cheese Calabi-Yau‘s:

(Abdussalam, Allanach, Balasubramanian, Berglund, Cicoli, Conlon, Kom, Quevedo, Suruliz; Blumenhagen, Moster, Plauschinn; for model building and phenomenological aspects see: Conlon, Maharana, Quevedo, arXiv:0810.5660)

2 requirements:
- Negative Euler number.
- SM lives on D7-branes around small cycles of the CY. One needs at least one blow-up mode (resolves point like singularity).
There are several generic types of particles:
There are several generic types of particles:

Stringy Regge excitations:

\[M_{\text{Regge}} = M_s = \frac{M_{\text{Planck}}}{\sqrt{V_6'}} \]

Open string excitations: completely universal (model independent), carry SM gauge quantum numbers

\[M_{\text{n}}^2 = M_s^2 \left(\sum_{k=1}^{n} \alpha_{-k}^{\mu} \alpha_{k}^{\nu} - 1 \right) = (n - 1) M_s^2, \quad (n = 1, \ldots, \infty) \]
D-brane cycle Kaluza Klein excitations:

\[
M_{KK}^\parallel = \frac{1}{(V_p^\parallel)^{1/p}} \simeq M_s = \frac{M_{\text{Planck}}}{(V_6')^{1/2}}
\]

Open strings, depend on the details of the internal geometry, carry SM gauge quantum numbers
D-brane cycle Kaluza Klein excitations:

\[M_{KK}^\parallel = \frac{1}{(V_p^\parallel)^{1/p}} \sim M_s = \frac{M_{\text{Planck}}}{(V_6')^{1/2}} \]

Open strings, depend on the details of the internal geometry, carry SM gauge quantum numbers.

The string Regge excitations and the D-brane cycle KK modes are charged under the SM and have mass of order \(M_s \). Can they be seen at LHC?!
D-brane cycle Kaluza Klein excitations:

\[M_{KK} = \frac{1}{(V_p^\parallel)^{1/p}} \approx M_s = \frac{M_{\text{Planck}}}{(V_6')^{1/2}} \]

Open strings, depend on the details of the internal geometry, carry SM gauge quantum numbers

The string Regge excitations and the D-brane cycle KK modes are charged under the SM and have mass of order \(M_s \). Can they be seen at LHC?!

Low string scale compactification is a concrete realization of the large number of species scenario at 1 TeV!

\[10^{32} \quad \text{KK (bulk) gravitons at the string scale.} \]
Test of D-brane models at the LHC:

\[gg, qq, qg \longrightarrow X \longrightarrow g, \gamma, Z, W, q, l \]

In string perturbation theory production of:
Test of D-brane models at the LHC:

\[gg, qq, qg \rightarrow X \rightarrow g, \gamma, Z, W, q, l \]

In string perturbation theory production of:

- Regge excitations of higher spin:

 \[g^* \text{ spin } 0,1,2 \quad \& \quad q^* \text{ spin } 1/2, 3/2 \]
Test of D-brane models at the LHC:

\[gg, qq, qg \rightarrow X \rightarrow g, \gamma, Z, W, q, l \]

In string perturbation theory production of:

- Regge excitations of higher spin:
 \[g^* \text{ spin } 0,1,2 \ \& \ q^* \text{ spin } 1/2, 3/2 \]

- Kaluza Klein (KK) (and winding) modes
Test of D-brane models at the LHC:

\[gg, \, qq, \, qg \longrightarrow X \longrightarrow g, \gamma, Z, W, q, l \]

In string perturbation theory production of:

- Regge excitations of higher spin:
 \[g^* \text{ spin 0,1,2} \quad \& \quad q^* \text{ spin 1/2, 3/2} \]

- Kaluza Klein (KK) (and winding) modes

(- \ Z\text{‘ gauge bosons, black holes})
Test of D-brane models at the LHC:

\[gg, qq, qg \rightarrow X \rightarrow g, \gamma, Z, W, q, l \]

In string perturbation theory production of:

- Regge excitations of higher spin:
 \[g^* \text{ spin } 0,1,2 \text{ & } q^* \text{ spin } 1/2, 3/2 \]

- Kaluza Klein (KK) (and winding) modes

(- Z' gauge bosons, black holes)

One has to compute the parton model cross sections of SM fields into new stringy states!
The string scattering amplitudes exhibit some interesting properties:

- Interesting mathematical structure
- They go beyond the N=4 Yang-Mills amplitudes:

 (i) The contain quarks & leptons in fundamental repr.

 Quark, lepton vertex operators:

 \[
 V_{q,l}(z, u, k) = u^\alpha S_\alpha(z) \Xi^{a \cap b}(z)e^{-\phi(z)/2} e^{ik \cdot X(z)}
 \]

 Fermions: boundary changing (twist) operators!

 Striking relation between quark and gluon amplitudes!

 (ii) They contain stringy corrections.
Parton model cross sections of SM-fields:
Parton model cross sections of SM-fields:

Disk amplitude among 4 external SM fields \((q, l, g, \gamma, Z^0, W^\pm)\):

\[
\mathcal{A}(\Phi^1, \Phi^2, \Phi^3, \Phi^4) = < V_{\Phi^1}(z_1) V_{\Phi^2}(z_2) V_{\Phi^3}(z_3) V_{\Phi^4}(z_4) >_{disk}
\]
Parton model cross sections of SM-fields:

Disk amplitude among 4 external SM fields $(q, l, g, \gamma, Z^0, W^\pm)$:

$$A(\Phi^1, \Phi^2, \Phi^3, \Phi^4) = <V_{\Phi^1}(z_1) V_{\Phi^2}(z_2) V_{\Phi^3}(z_3) V_{\Phi^4}(z_4)>_{disk}$$
Parton model cross sections of SM-fields:

Disk amplitude among 4 external SM fields \((q, l, g, \gamma, Z^0, W^\pm)\):

\[A(\Phi^1, \Phi^2, \Phi^3, \Phi^4) = \langle V_{\Phi^1}(z_1) V_{\Phi^2}(z_2) V_{\Phi^3}(z_3) V_{\Phi^4}(z_4) \rangle_{\text{disk}} \]

These amplitudes are dominated by the following poles:
Parton model cross sections of SM-fields:

Disk amplitude among 4 external SM fields \((q, l, g, \gamma, Z^0, W^\pm)\):

\[
\mathcal{A}(\Phi^1, \Phi^2, \Phi^3, \Phi^4) = \langle V_{\Phi^1}(z_1) \, V_{\Phi^2}(z_2) \, V_{\Phi^3}(z_3) \, V_{\Phi^4}(z_4) \rangle_{disk}
\]

These amplitudes are dominated by the following poles:

- Exchange of SM fields
Parton model cross sections of SM-fields:

Disk amplitude among 4 external SM fields \((q, l, g, \gamma, Z^0, W^\pm)\):

\[
\mathcal{A}(\Phi^1, \Phi^2, \Phi^3, \Phi^4) = \langle V_{\Phi^1}(z_1) \ V_{\Phi^2}(z_2) \ V_{\Phi^3}(z_3) \ V_{\Phi^4}(z_4) >_{\text{disk}}
\]

These amplitudes are dominated by the following poles:

- Exchange of SM fields
- Exchange of string Regge resonances (Veneziano like ampl.)

\[\Rightarrow\] new contact interactions:

\[
\mathcal{A}(k_1, k_2, k_3, k_4; \alpha') \sim - \frac{\Gamma(-\alpha's) \ \Gamma(1-\alpha'u)}{\Gamma(-\alpha's - \alpha'u)} = \sum_{n=0}^{\infty} \frac{\gamma(n)}{s - M^2_n} \sim \frac{t}{s} - \frac{\pi^2}{6} \ t \ u \ (\alpha')^2 + \ldots
\]

\[
V_s(\alpha') = \frac{\Gamma(1-s/M^2_{\text{string}}) \Gamma(1-u/M^2_{\text{string}})}{\Gamma(1-t/M^2_{\text{string}})} = 1 - \frac{\pi^2}{6} M^{-4}_{\text{string}} s u - \zeta(3) M^{-6}_{\text{string}} s t u + \cdots \rightarrow 1|_{\alpha' \to 0}
\]
Parton model cross sections of SM-fields:

Disk amplitude among 4 external SM fields \((q, l, g, \gamma, Z^0, W^\pm)\):

\[A(\Phi^1, \Phi^2, \Phi^3, \Phi^4) = \langle V_{\Phi^1}(z_1) V_{\Phi^2}(z_2) V_{\Phi^3}(z_3) V_{\Phi^4}(z_4) \rangle_{\text{disk}} \]

These amplitudes are dominated by the following poles:

- **Exchange of SM fields**
- **Exchange of string Regge resonances (Veneziano like ampl.)**

\[\Rightarrow \text{new contact interactions:} \]

\[A(k_1, k_2, k_3, k_4; \alpha') \sim -\frac{\Gamma(-\alpha' s) \Gamma(1 - \alpha' u)}{\Gamma(-\alpha' s - \alpha' u)} = \sum_{n=0}^{\infty} \frac{\gamma(n)}{s - M_n^2} \sim \frac{t}{s} - \frac{\pi^2}{6} tu (\alpha')^2 + \ldots \]

\[V_s(\alpha') = \frac{\Gamma(1 - s/M_{\text{string}}^2)\Gamma(1 - u/M_{\text{string}}^2)}{\Gamma(1 - t/M_{\text{string}}^2)} = 1 - \frac{\pi^2}{6} M_{\text{string}}^{-4} su - \zeta(3) M_{\text{string}}^{-6} stu + \ldots \rightarrow 1|_{\alpha' \rightarrow 0} \]

- **Exchange of KK and winding modes (model dependent)**
n-point tree amplitudes with 0 or 2 open string fermions (quarks, leptons) and n or n-2 gauge bosons (gluons) are completely model independent.

⇒ Information about the string Regge spectrum.

(Computation of higher point amplitudes for LHC: D. Härtl, D. Lüst, O. Schlotterer, S. Stieberger, T. Taylor, work in progress).
• n-point tree amplitudes with 0 or 2 open string fermions (quarks, leptons) and n or n-2 gauge bosons (gluons) are completely model independent.

⇒ Information about the string Regge spectrum.
(Computation of higher point amplitudes for LHC: D. Härtl, D. Lüst, O. Schlotterer, S. Stieberger, T. Taylor, work in progress).

• KK modes are seen in scattering processes with more than 2 fermions.

⇒ Information about the internal geometry.

KK modes are exchanged in t- and u-channel processes and exhibit an interesting angular distribution.

Five point scattering amplitudes (3 jet events):

5 gluons:

\[\mathcal{A}(g_1^-, g_2^-, g_3^+, g_4^+, g_5^+) = (V^{(5)}(\alpha', k_i) - 2i \epsilon(1, 2, 3, 4)P^{(5)}(\alpha', k_i)) \times M_{YM}^{(5)} \]

Field theory factors:

\[M_{YM}^{(5)} = \frac{4g_{YM}^3 \langle 12 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \cdots \langle 51 \rangle} \]

3 gluons, 2 quarks:

\[\mathcal{A}(g_1^-, g_2^+, g_3^+, q_4^-, \bar{q}_5^+) = (V^{(5)}(\alpha', k_i) - 2i \epsilon(1, 2, 3, 4)P^{(5)}(\alpha', k_i)) \times N_{YM}^{(5)} \]

\[N_{YM}^{(5)} = \frac{4g_{YM}^3 \langle 15 \rangle \langle 14 \rangle^3}{\langle 12 \rangle \langle 23 \rangle \cdots \langle 51 \rangle} \]

(D. Lüst, O. Schlotterer, S. Stieberger, T. Taylor, work in progress).

Five point scattering amplitudes (3 jet events):

5 gluons:

\(\mathcal{A}(g_{1}, g_{2}, g_{3}, g_{4}, g_{5})_{\alpha' \rightarrow 0} \rightarrow \mathcal{M}_{YM}^{(5)}, \quad (V^{(5)} = 1 + \zeta(2)\mathcal{O}(\alpha'^{2}), \quad P^{(5)} = \zeta(2)\mathcal{O}(\alpha'^{2})) \)

Field theory factors:

\[
\mathcal{M}_{YM}^{(5)} = \frac{4g_{YM}^{3} \langle 12 \rangle^{4}}{\langle 12 \rangle \langle 23 \rangle \ldots \langle 51 \rangle}
\]

3 gluons, 2 quarks:

\(\mathcal{A}(g_{1}^{-}, g_{2}^{+}, g_{3}^{+}, q_{4}^{-}, q_{5}^{+}) = (V^{(5)}(\alpha', k_{i}) - 2i\epsilon(1, 2, 3, 4) P^{(5)}(\alpha', k_{i})) \times \mathcal{N}_{YM}^{(5)} \)

\[
\mathcal{N}_{YM}^{(5)} = \frac{4g_{YM}^{3} \langle 15 \rangle \langle 14 \rangle^{3}}{\langle 12 \rangle \langle 23 \rangle \ldots \langle 51 \rangle}
\]

\[(D. \text{L"ust}, O. \text{Schlotterer, S. Stieberger, T. Taylor, work in progress}). \]
Five point scattering amplitudes (3 jet events):

\[
\mathcal{A}(g_1^-, g_2^+, g_3^+, g_4^+, g_5^+)_{\alpha' \to 0} \rightarrow \mathcal{M}^{(5)}_{YM}, \quad (V^{(5)} = 1 + \zeta(2)\mathcal{O}(\alpha'^2), \ P^{(5)} = \zeta(2)\mathcal{O}(\alpha'^2))
\]

3 gluons, 2 quarks:

\[
\mathcal{A}(g_1^-, g_2^+, g_3^+, q_4^-, \bar{q}_5^+)_{\alpha' \to 0} \rightarrow \mathcal{N}^{(5)}_{YM}
\]

Field theory factors:

\[
\mathcal{M}^{(5)}_{YM} = \frac{4g^3_{YM}\langle 12 \rangle^4}{\langle 12 \rangle\langle 23 \rangle \ldots \langle 51 \rangle}
\]

\[
\mathcal{N}^{(5)}_{YM} = \frac{4g^3_{YM}\langle 15 \rangle\langle 14 \rangle^3}{\langle 12 \rangle\langle 23 \rangle \ldots \langle 51 \rangle}
\]
The two kinds of amplitudes are universal: the same Regge states are exchanged:
2 gauge boson - two fermion amplitude:

Only string Regge resonances are exchanged \(\Rightarrow \)

These amplitudes are completely model independent!

\[
|\mathcal{M}(qg \to qg)|^2 = g_3^4 \frac{s^2 + u^2}{t^2} \left[V_s(\alpha') V_u(\alpha') - \frac{4}{9} \frac{1}{su} (sV_s(\alpha') + uV_u(\alpha'))^2 \right]
\]

\(\Rightarrow \) dijet events

\[
|\mathcal{M}(qg \to q\gamma(Z^0))|^2 = -\frac{1}{3} g_3^4 Q_A^2 \frac{s^2 + u^2}{su t^2} (sV_s(\alpha') + uV_u(\alpha'))^2
\]

Note: Cullen, Perelstein, Peskin (2000) considered:

\(e^+ e^- \to \gamma\gamma \)
2 gauge boson - two fermion amplitude:

Note: Cullen, Perelstein, Peskin (2000) considered: \(e^+e^- \rightarrow \gamma\gamma \)

Only string Regge resonances are exchanged \(\Rightarrow \)

These amplitudes are completely model independent!

\[\alpha' \rightarrow 0 : \text{agreement with SM!} \]

\[
|M(qg \rightarrow qg)|_{\alpha' \rightarrow 0}^2 = g_3^4 \frac{s^2 + u^2}{t^2} \left[1 - \frac{4}{9} \frac{1}{su} (s + u)^2 \right] \]

\[
|M(qg \rightarrow q\gamma(Z^0))|_{\alpha' \rightarrow 0}^2 = -\frac{1}{3} g_3^4 Q_A^2 \frac{s^2 + u^2}{su t^2} (s + u)^2 \]
These stringy corrections can be seen in dijet events at LHC:

\[M_{\text{Regge}} = 2 \text{ TeV}\]
\[\Gamma_{\text{Regge}} = 15 - 150 \text{ GeV}\]

Widths can be computed in a model independent way!

\[(\text{Anchordoqui, Goldberg, Taylor, arXiv:0806.3420})\]

There would be a clear signal at LHC during the first run with

\[E = 10 \text{ TeV}, \quad \mathcal{L} = 100 \text{ pb}^{-1}\]

KK modes are seen in scattering processes with more than 2 fermions.

Squared 4-quark amplitude with identical flavors:

$$|A(qq \rightarrow qq)|^2 = \frac{2}{9} \frac{1}{t^2} \left[(sF_{tu}^{bb}(\alpha'))^2 + (sF_{tu}^{cc}(\alpha'))^2 + (uG_{ts}^{bc}(\alpha'))^2 + (uG_{ts}^{cb}(\alpha'))^2 \right] + \frac{2}{9} \frac{1}{u^2} \left[(sF_{ut}^{bb}(\alpha'))^2 + (sF_{ut}^{cc}(\alpha'))^2 + (tG_{us}^{bc}(\alpha'))^2 + (tG_{us}^{cb}(\alpha'))^2 \right] - \frac{4}{27} \frac{s^2}{tu} \left[F_{tu}^{bb}(\alpha') F_{ut}^{bb}(\alpha') + F_{tu}^{cc}(\alpha') F_{ut}^{cc}(\alpha') \right]$$

Squared 4-quark amplitude with different flavors:

$$|A(qq' \rightarrow qq')|^2 = \frac{2}{9} \frac{1}{t^2} \left[(sF_{tu}^{bb}(\alpha'))^2 + (s\tilde{G}_{tu}^{cc}(\alpha'))^2 + (uG_{ts}^{bc}(\alpha'))^2 + (uG_{ts}^{cb}(\alpha'))^2 \right]$$

Dijet angular contribution by t-channel exchange:

CMS detector simulation: \(M_s = 5 \text{ TeV}, \ M_{KK} = 3.5 \text{ TeV} \)

Luminosity \(1 \text{ fb}^{-1} \) \hspace{1cm} \(10 \text{ fb}^{-1} \)
Conclusions

- New warped AdS vacua and interpolating domain walls
Conclusions

- New warped AdS vacua and interpolating domain walls

- Orientifolds: One can make some model independent predictions: (Independent of amount of (unbroken) supersymmetry!)

 String tree level, 4-point processes with 2 or 4 gluons
 ➡ observable at LHC ?? - M_{string}??
Conclusions

- New warped AdS vacua and interpolating domain walls

- Orientifolds: One can make some model independent predictions: (Independent of amount of (unbroken) supersymmetry!)

 String tree level, 4-point processes with 2 or 4 gluons ⚫ observable at LHC ?? - M_{string}??

Computations done at weak string coupling!

Black holes are heavier than Regge states: $M_{b.h.} = \frac{M_{\text{string}}}{g^2_{\text{string}}}$
Conclusions

- New warped AdS vacua and interpolating domain walls

- Orientifolds: One can make some model independent predictions:
 (Independent of amount of (unbroken) supersymmetry!)

 String tree level, 4-point processes with 2 or 4 gluons
 ➡ observable at LHC ?? - M_{string}??

 Computations done at weak string coupling!

 Black holes are heavier than Regge states: $M_{\text{b.h.}} = \frac{M_{\text{string}}}{g_{\text{string}}^2}$

 Question: do loop and non-perturbative corrections change tree level signatures? Onset of n.p. physics: $M_{\text{b.h.}}$
If nature chooses weakly coupled strings with a string scale at a few TeV, LHC should find them until 2012.